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VCE Specialist Mathematics Units 3 & 4 Trial Examination 2 Suggested Solutions

SECTION 1

Question 1
The ellipse can be sketched as follows:

g e

3l

51

1100, 1) @b @, 1)

(2’ _2)

x=4

2 2
With reference to the general equation (x _2h) + O _zk) =1, the semi-minor axis length a is 2, the

a b ( 2)2 ( 1)2
semi-major axis length b is 3 and the centre (&, k) is (2, 1). Hence the equation is x—4 + _9 =1.

Answer D

Question 2

For f(x)= %, f(=x) =f(x) (‘even’ function), hence the graph of y = f(x) is symmetrical about the

X

y-axis. By division, f(x)= % + b. Since f(x) is undefined when x = 0, the line x =0 is a vertical
X

asymptote for the graph. As the magnitude of x approaches infinity, % approaches zero and f(x)
X

approaches b. Hence the line y = b is a horizontal asymptote for the graph.

Answer E
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VCE Specialist Mathematics Units 3 & 4 Trial Examination 2 Suggested Solutions

Question 3
4
J3i-1
4 —1—ﬁz
T 1+ 3 —1—[

_4(=1-.3i)
1+3

=—1-./3i

The complex conjugate of z, z=— 1 + ./3i.
The modulus of z = (1)’ + (/3) =2 = a.

The argument of z = tanl(-“/—ﬁ) in the second quadrant = 2—;-T =b.

=

Answer A

Question 4
To find the three cube roots of 27i, let z3 =27i=0+27i.

Thus 7° = 27(:15(%r + an) for k, an integer.
By de Moivre’s theorem, z = 3015(2 21;71) for k, an integer.

The first cube root (k = 0) is 3cis(%) = 3(@ + %1)

The other values of z may be obtained by progressively adding 2—; or letting k = 1, 2.

) 5L+ 1) ana 3eis(3T) -
3C1S( G =3 5 +2l and 3cis 3(-i)
The truth of each statement can now be determined.

A.  Onan Argand diagram, z,, z, and z, are separated by an angle of %7! radians. True: the three cube
roots must be equally spaced on a circle.

B.  z, =3i. False: one of the roots is —3i but none is 3i. Also, (3i)3 =-27i. Note that the complex

conjugate root theorem applies to polynomial equations with real coefficients.

C. |2, = 3. True: all roots have modulus 3 (they are spaced on a circle of radius 3).

D. (z3) = %ms( 56 ) Could be true if z; = 3015(55) then by de Moivre’s theorem

5:1)
(Z3) 01s(6 )
: J3 1
E. z1+z2+z3:0.True.z1+z2+z3:3(_2_+2)+3(_ + = )+(3,)_

Answer B

Copyright © 2007 Neap TEVSMUS4EX2_SS_07.FM 3



VCE Specialist Mathematics Units 3 & 4 Trial Examination 2 Suggested Solutions

Question 5

If Im(z%) > 4, we can write Im{ (x + iy)’} > 4.
Im{x” + 2xyi + (iy)’} > 4

Im{x’ -y +2xyi} >4

2xy =4

2
> <
y_x

This region is ‘above’ each branch of the hyperbola y = g
X
The region defined by —3% < Arg(z) < JZT is one half of the complex plane (with the origin excluded)

bounded by the line Re(z) = Im(z).
The intersection of the two regions is illustrated by alternative B.

Answer B

Question 6
The alternatives show a dilation from the y-axis, a translation parallel to the x-axis and possibly a reflection

in the x-axis. Alternative E. can be eliminated first because its period of 5 does not match the graph.

Consider the stationary points and vertical asymptotes of y = tsec(a(x — b)) and y = cosec(a(x — b)).

. . . Vertical asymptotes
Curve equation Stationary points (x values)
y = sec(a(x— b)) (b,l),(’-’+b,—1),(2—”+b, 1) T3y
a a 2a 2a
y = —sec(a(x b)) (b,—l),(y—t+b, 1), (2—”+b,—1),... T3y
a a 2a 2a
7 3 Sm 7 27
= _ —-+b,1),(——+b,—1),(—+b,1),.” ,=+b, =+, ...
y=cosec(a(x — b)) (2a 24 2a b p +b » +b
7 3 Sm 4 27
=_ - —+b,—1),(—+b,1),(—+b,—l),... = =
y =—cosec(a(x—b)) (2a 2a g b, P +b, P +D,

Comparing these stationary points and asymptotes with those of the graph shows that the appropriate
equation is y = —cosec(a(x — b)) = cosec(a(b — x)) since sin(-A) = —sin(A).
Answer D
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Question 7

The usual domain of y = sin(x) so that it is a one-to-one function is [—g, %} The range of sin(x) is [-1, 1].

With f(x) = sin(2x) the period is halved, so the domain of f{x) could be [—% %J , with the same range as for

y = sin(x). The domain and range of f _l(x) would then be [-1, 1] and [—%, %J . Although no alternative has

[—%, %} as its range, the range of alternative C, [%, S_f} is suitable because it is one period advanced
T

from [—% Z} . Hence the original domain restriction of f{x) corresponding to this will result in a one-to-one

function, as required.

Answer C

Question 8

The vector resolute of 21 —3j —k in the direction of 31 — 2k is given by

2%x3-3x0-1x(=2)
324 (<2)°

8 ..

Answer C

Question 9

The gradient of the tangent to the curve y = cosfl()—g is given by j—i

dy__ 1 __ X 1 applying the chain rule
dx 2

N
Il
wid

When x = 1, the gradient is _L and y = cos_l(
J3

The tangent equation is y — %T = _L (x-1)

J3

Answer C
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Question 10

4
4

In j A1 —=sin(2x)(1 - 2cosz(x)) dx, replace 1 — sin(2x) with u.
0

du
—=-2 2
T cos(2x)

=_2(2cos’(x) = 1)
=2(1 - 2cos’(x))

Whenx:%’,uzl—lzo.

When x=0,u=1-0=1.

0
1

The integral becomes %J‘ u? du.

1
Answer E

Question 11
Jsin3(6x)dx = j sin’(6x) sin (6x)dx = j (1 = cos’(6x))sin(6x)dx

Using the substitution u# = cos(6x) so that % =-6sin(6x), x = % givesu =-1 and x =0 gives u = 1.
X

5
I (1 - cos*(6x))sin(6x)dx
0

.6
- _é (1= cos’(6:x))(=6in (6x))dx
o
l
- _é (1- uz)du
1
-1
= éJ‘ (u2 — l)du
1
Answer D
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Question 12

The initial point is (0, 1),i.e.a=0and b = 1.
Euler’s method using a step size of 0.1 gives

a=0 fa)=f(0)=1
x,=0.1 f(x,) =£(0.1) = cos™(0.1)
Using y, ., =y, + hf(x,)
yi1=b+hf(a)
=1+0.1cos’(0)
= 1.1

Y2 =Yy +hf(x))

=1.1+0.1cos’(0.1)
Answer C

Question 13
2

10a=-10g- L
“ £710
dv__ v
dt 100
dv_ 100g+v’
dt 100
Answer D

Question 14

- —
We require AB = DC so that one pair of opposite sides are equal and parallel.

e
Also, we require that ‘AB‘ = ‘AD‘. Hence we have adjacent sides of equal length.

Answer A
Question 15
r(1) = J.(eti ~3e )

=—elite j4d
Whent=0,r=0.
d=i-j

r(t)=(1-¢)i+(e=1)j

Answer A

Copyright © 2007 Neap TEVSMUB4EX2_SS_07.FM 7
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Question 16
1.0 = o b|cos 0)

_ (i-2k).(2i —j +2k)
- J5%3

_2-4
3.5
_ =2

-

Answer C

Question 17

Distance travelled is the area under the graph.

600 = %(36 +1)x 24

50=36+1

t=14

The particle travels at 24 m/s for 14 seconds. Hence the particle travels at a constant velocity for
24 x 14 = 336 metres.

Answer B

Question 18

initial momentum = 8 X 7

=56 (kg m/s)
final momentum = 8 X 1
=8 (kg m/s)
change in momentum = final momentum — initial momentum
=8-56
=-48 (kg m/s)

Answer B

Question 19

sin(0) = 1—53— and so cos(0) = %

mgsin(0) —uN = ma (parallel to the plane)
N =mgcos(0) (perpendicular to the plane)

Smg _ 12umg _
13 13

a

- & (5_
a= 13(5 12u)

Answer E
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Question 20

r=- ﬁcos(t)i + sin(7)]
r= ﬁsin(t)i + cos(1)j
'f: ﬁcos(t)i —sin(1)]

From Newton’s 2nd law of motion, F = mr.

F= 2J§cos(t)i —2sin(1)j

[E| = o/ 12¢08(1) + 4sin’ (1)

Answer A

Question 21

4 O
3m particle: T=3mg )
m particle: T—-uN-mgsin(0)=0 2)
N=mgcos(0) 3)

Substituting (1) and (3) into (2) gives
3mg —umgcos(0)—mgsin(6)=0
3—ucos(0)-sin(0)=0
ucos(6)=3-sin(0)

_3-sin(0)
cos(0)
Answer B
Question 22
Given v* = 12 — 4x°
%vz =6-2x"
_d(1)
T dx\2

Hence a = —4x.

We are looking for a linear graph that passes through the origin with a negative gradient. Graph D is correct
as the motion could also be along the negative x-axis.

Answer D

Copyright © 2007 Neap TEVSMUS4EX2_SS_07.FM 9
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SECTION 2

Question 1

a. y

0.3+
—0.61

Suitable y-axis scale.

Correct graph shape and location of endpoints.

b. The maximum rate of decrease is at the local minimum of the graph of y = f’(x).

The coordinates of the local minimum are (1.47, -0.67).

Hence the corresponding point on the graph of f has coordinates (1.47, 1.49).

C. The maximum rate of decrease is 0.67.

o o]

2
4 J dx=15
/\/x3+

Solving this equation for a gives a = 1.35.

Using CAS:

Fix Fzr Fi=] Fur [ Fb+
Tools|Al1dcbra|Cale|0ther|Fraral0)Clcan UF|

a 16
m=olue|m- dx=15p
1ol

412979 or 5=1.34959252845
el G B D, [, 80
" RAD AUTO FUNC

A=
1430

Using a graphics calculator:

A Flokz Flot:

wMr=
=M=
wMy=
wMe=
~ME=

“M1EnfhlIntoles
~Etd Il HaBa k-1

OR

EQUATION S0L

SRS+ LB
135

VER
Eﬂh=E=H*FHIHt§%E

Al
Al

Al
Al

Al

Al

Al

Copyright © 2007 Neap
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VCE Specialist Mathematics Units 3 & 4 Trial Examination 2 Suggested Solutions

Question 2
~ a
a a=—=
3|
b. i

ii.

iii.

(i-j-k) Al

b= (21 +3j -0 (4i - +5K)
=8-3-5 Al
=0

Asb.c=0 and |‘t~>

c| #0, then b is perpendicular to c.

Given n = xi + yj + zk.
b.n=0,2x+3y—z=0 (D

cn=0,4x-y+5z=0 )

=1, x+y +7 =1 3) Al for (1), (2) and (3)
For example, 2 x (1) —(2) givesy=2z.
Substituting y = z into (1) for example gives x = —y. M1

oo . . 1 1 1 .
Substituting y = z and x = —y into (3) gives x =——, y=— and z=—, since x < 0.
NG NG
~ 1, .
Hence n=-—(-j - k). Al
B s -

a=—./3n, i.e. a is perpendicular to both b and ¢, so a, b and ¢ are mutually
perpendicular. Al

Vz‘a‘x‘ﬁ‘x‘ﬁf‘

=3 x J14 x /42 M1 Al
=42

C. c=ma+nb where m, n#0

4i+pi+51~(=m(i—i—l~()+n(23+3i—1~()

By equating components we obtain:

4=m+2n (D)

p=—-m+3n 2)

S=—-m-n 3) Al for (1), (2) and (3)

(1)+(3) givesn=9 Al

Substituting n =9 into (1) or (3) gives m =—14. Al

Hence p =41. Al
Question 3

a. Resolving perpendicular to the slope, N = 60gcos(6).

Resolving parallel to the slope, 60gsin(8) = 60a. Al
Hence a = gsin(0)
1
=98 X — Al
9.8 x 20
=0.49 m/s” Al

Copyright © 2007 Neap TEVSMUB4EX2_SS_07.FM 11
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b. Michael travels down the slope with constant acceleration. If v is his final speed, then v can be

) 2 2
determined from v =u" + 2as.

V=07 +2x049%5 Al
V=49
v=2.21 m/s Al
C. The time taken to reach the bottom can be found from v = u + at.
2.21=0+0.49¢ Al
,_221
0.49
To the nearest second, this is 5 seconds. Al
d. On the level, the equation of Michael’s motion is a = —-l%, where k is a constant.
i. This question concerns distance and speed. Use a = vfl—; = —%. Al
v
dv__k
dx 3
dx __y’
dv k

3
x=J‘—V—dv
k

*From here, technology can be used to find the solution — see alternative solution.
4

x=-L 4¢ Al

4k
Whenx=0,v=2.21
4

0= —(2.21) te

4k
4

o= (2.21) M1

4k

Whenx=5,v=1.5
s —~(1.5)* N Q21

4k 4k
4k = 23.8544 — 5.0625
5
4k =3.75839
= 23.8544
3.75839
4
= 23.8544—v Al
3.75839
When v = 1, x = 225544 _ ¢ 9309,
3.75839
After approximately 6 m of travel on the level, Michael reaches a speed of 1 m/s. Al

Copyright © 2007 Neap TEVSMUB4EX2_SS_07.FM 12
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*Alternative Solution (using technology):

15
3
To find k, 5 =I —% dv
221
1.5
k= 1 v dv M1
5
221
=0.9396 Ml
Using a graphics calculator: Using CAS:

1-2fnInto -W5a 0.
21.1.52

rri——l’T‘l’Fz——l’Fu——l’T‘l’Tm
[ ] a2 u Tools|Ald¢bra|Calc|Other |Frami0)Clean U
322485

1.5 _ =
z.zp A
. 9395966405

1500 ™3 w, 2. 21,1.5%
w EAD ERACT FUNL 1750

. 1/5-[

1

3
Then x=J (—%)dv

221

1

N 3
=090396| () Ml
221

=6.0809
After approximately 6 m of travel on the level, Michael reaches a speed of 1 m/s. Al

Using a graphics calculator: Using CAS:

1. 939e+'nIntC -
Sala2.21

=12 Thoss|arhebraltate|ther|Framn|c1ian us
B.BEE334213

1 It L3
T Jz_m vy
6. 02099421296

1. 939600 -u™T w2 21,10
w EAD ERALT FUNL 1750

Copyright © 2007 Neap TEVSMUS4EX2_SS_07.FM 13
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ii.

Since this part concerns time and speed, use a = % = —3'758239.
4y

de_ 4
dv  3.75839

4y
= j_3.75839dv
3
_L + C
(3.75839 x 3)
When t=0, v=2.21.
_ 42ty
(3.75839 x 3)
_ 421y’
(3.75839 x 3)
42’ -y
3.75839 x 3
When v =1, ¢t is given by
Lo4ean’- 1)
3.75839 x 3
t=3.474

Michael reaches a speed of 1 m/s on the level after 3 seconds (correct to the
nearest second).

Alternative Solution (using technology):

dv _ 0.9396

- 2
dt v

2
dr _ v

dv 0.9396

1
2

1%
! ‘I (538 )

2.21

=3.474
Michael reaches a speed of 1 m/s on the level after 3 seconds (correct to the
nearest second).

Using a graphics calculator: Using CAS:

fhinto -Wesa, 233596
W2 21212
S drdd 7 EE06

Fi- Fz= [FZ=] Fu-r FE F&-
Tools|Ald¢bra|Calc|Other |Frami0)Clean U

1 2
B T T
3. 47 44TEESEZS

N N A= =P - Pl )
] RAD ERACT  FUNC 1750

Al

Al

Al

M1

M1

Al

Copyright © 2007 Neap TEVSMUB4EX2_SS_07.FM

14



VCE Specialist Mathematics Units 3 & 4 Trial Examination 2 Suggested Solutions

Question 4
. 2.2 4.2
a i) = J(9z—3z )"+ (log, (1 + (t—3)*)
\f(l)\=](9_3)2+(1oge(1+(1—3)4))2 Ml
Hence ‘f( 1 )‘ = 6.64, i.e. the particle’s speed is 6.64 m/s (correct to two decimal places). Al
b.  Attempting to solve 97— 37" =0 and log,(1 + (1-3)*) =0 for Ml
From 97— 31" =0 we obtain 7 =0, 3 and from log,(1 + (1 —3)*) =0 we obtain ¢ = 3. Al
Hence the particle is a rest at = 3. Al
(%)
: o dt
c. The gradient of the curve is given by == = —. M1
“ @
dt
1 17
Atr=1, %3-’ = % =0.47 (correct to two decimal places). Al
X
T
d. (1) =y(0) +J. log,(1 +(t—3)4)dt M1
0
1
y(l):2+J. log, (1 + (t—3)")dt Al
0
Hence the y-coordinate at P is 5.67 (correct to two decimal places). Al
Question 5
. (7
C Lete-en(?)
a etz =cis| ¢
2 )2 . (2 . .,
i Z =|cis 6)) = cis 3 using de Moivre’s theorem Al
= cos(y—r) + isin(—)
B 3 3
_ 1, 43,
=5 + 5 i Al
. 4 . (m\\* . .
ii. z = (015(6)) = 015(—) using de Moivre’s theorem
= cos(z—) + isin(—)
- 3
__1, ] ; Al
2 2
Copyright © 2007 Neap TEVSMUS4EX2_SS_07.FM 15
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2 1. 3. (1 @)
b z -7 +1= 2+21 2+2l+1
B SRSV BT P Al
2 2 2 2
=0, as required Al
C. i. Using the factor theorem, one linear factor is z — cis(%) . The other will be
z- cis(—%r) (conjugate root theorem). M1
cis(y—r) = ﬁ + i and cis(—y—r) = ﬁ _i
6 2 2 6 2 2
In Cartesian form, these factors are (z - 73 - 9 and (z - ? + 9 . Al
ii. The product of these factors is (z - —2§ - 9(2 - -“-2@ + 9 .
SN0,
2
2 3.1
=7 -J3z+=+-
=3z 1t
= zz - ﬁz +1 Al
d. z4—z2+1:z4+2z2+1—3z2
2 2
="+ 1) ~(432)
= (2 +1-32) (2" + 1 +432) Al

Comparing the quadratic factors with the result of c.ii. enables us to obtain the other set of linear
factorsas(z+§—9and(z+§+9, A2

Alternative solution:

. .4 2 .
A more elegant method is to recognise z —z” + 1 as an even function of z.

Hence if fla) = 0, then f(—a) = 0 also. M1
Thus if (z — a) is a factor, so is (z + @), Al
leading to the same result for the factors. Al

Copyright © 2007 Neap TEVSMUS4EX2_SS_07.FM 16
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e.
Im(z) A
— l + [él 1
o Im(z) ==
>» Re(2)
Z=1
i

2 2 )
i. All points correct and labelled. Al
ii.  Circle |zl =1 and line Im(z) = % shown correctly and labelled. Al
Region of intersection, with boundary markings, correctly shown. Al
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